The Impact of Subchronic Soybean Milk and Genistein Supplementation on Pancreatic Fatty Infiltrations of Sprague Dawley Male Mice

Authors

  • Laksmi Sasiarini Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Faculty of Internal Medicine, Universitas Brawijaya – dr. Saiful Anwar, General Hospital, Malang
  • Djoko Wahono Soeatmadji Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Faculty of Internal Medicine, Universitas Brawijaya – dr. Saiful Anwar, General Hospital, Malang
  • Aktaruddin Arief Santoso Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya – dr. Saiful Anwar, General Hospital, Malang

DOI:

https://doi.org/10.21776/ub.crjim.2020.001.02.4

Keywords:

soybean milk, genistein, pancreatic fatty infiltrations

Abstract

Isoflavones (genistein, daidzein) on soybean milk have phytoestrogenic properties. In Asia, the blood phytoestrogen levels can reach 160 ng/ml (80 times higher than Western). This may potentially disrupt endocrine functions regarding its binding with estrogen receptors.. Since the function and distribution of adipose tissues are regulated by estrogen receptors, the reduction of estrogen receptor-α(ERα) results in ectopic fats distribution around visceral tissues, such as the pancreas. Aim: To investigate the impact of subchronic soybean milk and genistein supplementation on pancreatic fatty infiltrations in mice. Methods: The experiment used 35 Sprague dawley male mice under 7 treatment groups within 60 days: negative control with standard rationed food, 3 groups with a variable dose of soybean milk: 100 mg, 200 mg, and 400 mg, and 3 groups with a variable dose of genistein: 0.4 mg, 0.8 mg, and 1.6 mg. Histological measurements on the level of pancreatic fatty infiltrations were conducted after. Analyses used Kruskal-Wallis and post-hoc Mann-Whitney. Results: Medium to a high level of pancreatic fatty infiltrations were found at the control group while there is a decreasing trend on the level of pancreatic fatty infiltrations on groups with soybean milk and subchronic genistein compared with the control group, proportional to higher dosage supplementation. The reduction of pancreatic fatty infiltration levels on groups with soybean milk and subchronic genistein supplementation is not statistically significant compared to control. Conclusion:  Supplementation of soybean milk and subchronic genistein do not significantly reduce the levels of pancreatic fatty infiltrations in Sprague dawley male mice.

References

Pihlajamaa P, Zhang F-P, Saarinen L, Mikkonen L, Hautaniemi S, Jänne OA. The phytoestrogen genistein is a tissue-specific androgen receptor modulator.2011;152 (11):4395-405. [doi: 10.1210/en.2011-0221]

Badole SL, Bodhankar SL. Chapter 8 - Glycine max (Soybean) Treatment for Diabetes. In: Watson RR, Preedy VR, editors. Bioactive food as dietary interventions for diabetes. San Diego: Academic Press; 2013. p. 77-82.

Zamora-Ros R, Knaze V, Lujan-Barroso L, Kuhnle G, Mulligan A, Touillaud M, et al. Dietary intakes and food sources of phytoestrogens in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24-hour dietary recall cohort. Eur J Clin Nutr. 2012;66(8):932.[doi: 10.1038/ejcn.2012.36]

Rishi R. Phytoestrogens in health and illness. Indian J Pharmacol. 2002;34(5):311-20.

Denis L, Morton MS, Griffiths K. Diet and its preventive role in prostatic disease. Eur Urol. 1999;35(5-6):377-87. [doi: 10.1159/000019912]

Mostrom M, Evans TJ. Chapter 52 - Phytoestrogens. In: Gupta RC, editor. Reproductive and developmental toxicology. San Diego: Academic Press; 2011. p. 707-22.

Fritz WA, Wang J, Eltoum I, A Lamartiniere C. Dietary genistein down-regulates androgen and estrogen receptor expression in the rat prostate. Mol Cell Endocrinol. 2002; 186:89-99. [doi: 10.1016/s0303-7207(01)00663-3]

Blüher M. Importance of estrogen receptors in adipose tissue function. Mol Metab. 2013;2(3):130-2.[doi: 10.1016/j.molmet.2013.07.001]

Pinnick KE, Collins SC, Londos C, Gauguier D, Clark A, Fielding BA. Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. 2008;16(3):522-30. [doi: 10.1038/oby.2007.110]

Singh RG, Yoon HD, Wu LM, Lu J, Plank LD, Petrov MS. Ectopic fat accumulation in the pancreas and its clinical relevance: A systematic review, meta-analysis, and meta-regression. Metab Clin Exp. 2017; 69:1-13. [doi: 10.1016/j.metabol.2016.12.012]

Yu T-Y, Wang C-Y. Impact of non-alcoholic fatty pancreas disease on glucose metabolism. J Diabetes Investig. 2017;8(6):735-47. [doi: 10.1111/jdi.12665]

Bar-El Dadon S, Reifen R. Soy as an endocrine disruptor: cause for caution? Journal of pediatric endocrinology & metabolism: JPEM. 2010; 23(9):855. [doi: 10.1515/jpem.2010.138]

Nohynek GJ, Borgert CJ, Dietrich D, Rozman KK. Endocrine disruption: fact or urban legend? Toxicol Lett. 2013;223(3):295-305. [doi: 10.1016/j.toxlet.2013.10.022]

Anonim. Layer Starter Par S Mash. In: INDONESIA PJC, editor. https://japfacomfeedcoid/id/product-and-services/product-detail/layer-starterpark-s-mash. Agt 01/2017/Comfeed Layer Versi INA ed2017.

Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27. [doi: 10.4103/0976-0105.177703]

Dembiński A, Warzecha Z, Ceranowicz P, Dembiński M, Cieszkowski J, Pawlik WW, et al. Effect of ischemic preconditioning on pancreatic regeneration and pancreatic expression of vascular endothelial growth factor and platelet-derived growth factor-A in-ischemia/reperfusion-induced pancreatitis. J Physiol Pharmacol. 2006;57(1):39-58. [PMID: 16601314]

Papaccio G, Nicoletti F, Aurelio Pisanti F, Bendtzen K, galdieri M. Prevention of spontaneous autoimmune diabetes in NOD mice by transferring in vitro antigen-pulsed syngeneic dendritic cells. 2000;141(4):1500-5. [doi: 10.1210/en.141.4.1500]

Wang S, Wang Y, Pan M-H, Ho C-T. Anti-obesity molecular mechanism of soy isoflavones: weaving the way to new therapeutic routes. Food Funct. 2017;8(11):3831-46. [doi: 10.1039/C7FO01094J]

Penza M, Montani C, Romani A, Vignolini P, Pampaloni B, Tanini A, et al. Genistein affects adipose tissue deposition in a dose-dependent and gender-specific manner. Endocrinology. 2006;147(12):5740-51. [doi: 10.1210/en.2006-036]

Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F, et al. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007;41(1):111-9.[ doi: 10.1258/002367707779399518]

Clarke H, Coates M, Eva J, Ford D, Milner C, O'donoghue P, et al. Dietary standards for laboratory animals: report of the Laboratory Animals Centre Diets Advisory Committee. Laboratory animals. 1977;11(1):1-28. [doi: https://doi.org/10.1258/002367777780959175]

Hedrich HJ. Chapter 3 - Taxonomy and Stocks and Strains. In: Suckow MA, Weisbroth SH, Franklin CL, editors. The Laboratory rat (Second Edition). Burlington: Academic Press; 2006. p. 71-92.

Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev. 2013;34(3):309-38. [doi: 10.1210/er.2012-1055]

Ahmad S, Ahmed I. Response of wistar rats to broiler chicken feed and soybean on body weight, obesity and weight of selected visceral organs. Pak J Biochem Mol Biol. 2014;47(3-4):137-40.

Andlauer W, Kolb J, Fürst P. Absorption and metabolism of genistein in the isolated rat small intestine. FEBS Lett. 2000;475(2):127-30. [doi: 10.1016/s0014-5793(00)01642-2]

Setchell KD, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, et al. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr. 2002; 76(2):447-53. [doi: 10.1093/ajcn/76.2.447]

Steensma A, Faassen-Peters MA, Noteborn HP, Rietjens IM. Bioavailability of genistein and its glycoside genistin as measured in the portal vein of freely moving unanesthetized rats. J Agric Food Chem. 2006;54(21):8006-12. [doi: 10.1021/jf060783t]

Cederroth CR, Nef S. Soy, phytoestrogens and metabolism: A review. Mol Cell Endocrinol. 2009;304(1–2):30-42. [doi: 10.1016/j.mce.2009.02.027]

Ponnusamy S, Tran QT, Harvey I, Smallwood HS, Thiyagarajan T, Banerjee S, et al. Pharmacologic activation of estrogen receptor β increases mitochondrial function, energy expenditure, and brown adipose tissue. FASEB J. 2016;31(1):266-81. [doi: 10.1096/fj.201600787RR]

Grossini E, Farruggio S, Raina G, Mary D, Deiro G, Gentilli S. Effects of Genistein on Differentiation and Viability of Human Visceral Adipocytes. Nutrients. 2018; 10(8):978. [doi: 10.3390/nu10080978]

Park HJ, Della-Fera MA, Hausman DB, Rayalam S, Ambati S, Baile CA. Genistein inhibits the differentiation of primary human adipocytes. J Nutr Biochem. 2009;20(2):140-8.[doi: 10.1016/j.jnutbio.2008.01.006]

Downloads

Published

2020-11-05