The Dietary Sugars Intake: The Role In Alzheimer’s Disease Pathomechanism
DOI:
https://doi.org/10.21776/ub.crjim.2023.004.01.7Keywords:
cognitive disordersAbstract
Alzheimer’s disease is a common neurodegenerative disease that affect elderly and it became a serious global burden for years. Despite many studies have been performed, an effective cure for Alzheimer’s was still not be found. Therefore, it is necessary to not only focus on curative methods but also preventive methods with modifiable risk factors and underlying disease, for example lifestyle and metabolic disease, as potential approach in Alzheimer’s disease prevention in the future. The excessive dietary sugar intake has been suggested as a risk factor of many diseases such as metabolic disease and cognitive impairment disease. It may promote cognitive declines through some pathways such as induce alteration of gut microbiomes, metabolism and immune system. These abnormal processes may evoke amyloid β plaque formation and neurofibrillary tangles in brain cells as the effect of chronic inflammation. Chronic inflammation has been widely studied as the hallmark of Alzheimer’s disease pathology. Therefore, the correlation between dietary sugar and impairment cognitive, specifically Alzheimer’s disease will be summarized.
References
Philipp Mergenthaler, Ute Lindauer, Gerald A. Dienel, Andreas Meisel,Sugar for the brain: the role of glucose in physiological and pathological brain function,Trends in Neurosciences,Volume 36, Issue 10,2013,Pages 587-597,ISSN 0166-2236,https://doi.org/10.1016/j.tins.2013.07.001.
Koepsell, H. Glucose transporters in brain in health and disease. Pflugers Arch - Eur J Physiol 472, 1299–1343 (2020). https://doi.org/10.1007/s00424-020-02441-x
Prinz, P. The role of dietary sugars in health: molecular composition or just calories?. Eur J Clin Nutr 73, 1216-1223 (2019). http://doi.org/10.1038/s41430-019-0407-z
Ma X, Nan F, Liang H, Shu P, Fan X, Song X, Hou Y and Zhang D (2022) Excessive intake of sugar: an accomplice of inflammation. Front. Immunol. 13:988481. doi: 10.3389/fimmu.2022.988481
Chong CP, Shahar S, Haron H, Din NC. Habitual sugar intake and cognitive impairment among multi-ethnic Malaysian older adults. Clin Interv Aging. 2019;14:1331-1342
https://doi.org/10.2147/CIA.S211534
Laguna, J. C., Alegret, M., Cofán, M., Sánchez-Tainta, A., Díaz-López, A., Martínez-González, M. A., … Ros, E. (2021). Simple sugar intake and cancer incidence, cancer mortality and all-cause mortality: A cohort study from the PREDIMED trial. Clinical Nutrition, 40(10), 5269–5277. doi:10.1016/j.clnu.2021.07.031
Ponzo, V.; Pellegrini, M.; Costelli, P.; Vázquez-Araújo, L.; Gayoso, L.; D’Eusebio, C.; Ghigo, E.; Bo, S. Strategies for Reducing Salt and Sugar Intakes in Individuals at Increased Cardiometabolic Risk. Nutrients 2021, 13, 279. https:// doi.org/10.3390/nu13010279
McCreedy, N.; Shung-King, M.; Weimann, A.; Tatah, L.; Mapa-Tassou, C.; Muzenda, T.; Govia, I.; Were, V.; Oni, T. Reducing Sugar Intake in South Africa: Learnings from A Multilevel Policy Analysis on Diet and Noncommunicable Disease Prevention. Int. J. Environ. Res. Public Health 2022, 19, 11828. https://doi.org/ 10.3390/ijerph191811828
Lin, W.-T.; Kao, Y.-H.; Li, M.S.; Luo, T.; Lin, H.-Y.; Lee, C.-H.; Seal, D.W.; Hu, C.-y.; Chen, L.-S.; Tseng, T.-S. Sugar-Sweetened Beverages Intake, Abdominal Obesity, and Inflammation among US Adults without and with Prediabetes—An NHANES Study. Int. J. Environ. Res. Public Health 2023, 20, 681. https://doi.org/10.3390/ ijerph20010681
Guideline: Sugars intake for adults and children. Geneva: World Health Organization; 2015.
Johnson RK, Appel LJ, Brands M, Howard BV, Lefevre M, Lustig RH, Sacks F, Steffen LM, Wylie-Rosett J; on behalf of the American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism and the Council on Epidemiology and Prevention. Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation. 2009;120:1011–1020.
Ma X, Nan F, Liang H, Shu P, Fan X, Song X, Hou Y and Zhang D (2022) Excessive intake of sugar: an accomplice of inflammation. Front. Immunol. 13:988481. doi: 10.3389/fimmu.2022.988481
Moling O. et al.: Sugar and the mosaic of autoimmunity © Am J Case Rep, 2019; 20: 1364-1368
Burillo, J.; Marqués, P.; Jiménez, B.; González-Blanco, C.; Benito, M.; Guillén, C. Insulin Resistance and Diabetes Mellitus in Alzheimer’s Disease. Cells 2021, 10, 1236. https://doi.org/10.3390/ cells10051236
Bairamian D, Sha S, Rolhion N, Sokol H, Dorothée G, Lemere CA, Krantic S. Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer's disease. Mol Neurodegener. 2022 Mar 5;17(1):19. doi: 10.1186/s13024-022-00522-2. PMID: 35248147; PMCID: PMC8898063.
Krakovski MA, Arora N, Jain S, Glover J, Dombrowski K, Hernandez B, Yadav H, Sarma AK. Diet-microbiome-gut-brain nexus in acute and chronic brain injury. Front Neurosci. 2022 Sep 16;16:1002266. doi: 10.3389/fnins.2022.1002266. PMID: 36188471; PMCID: PMC9523267.
Joanna K Coker, Oriane Moyne, Dmitry A. Rodionov & Karsten Zengler (2021) Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health, Gut Microbes, 13:1, DOI: 10.1080/19490976.2020.1869502
Longjian Liu, Stella L. Volpe, Jennifer A Ross, Jessica A Grimm, Elisabeth J Van Bockstaele & Howard J Eisen (2021): Dietary sugar intake and risk of Alzheimer's disease in older women, Nutritional Neuroscience, DOI: 10.1080/1028415X.2021.1959099
Stefaniak, O.; Dobrzy ´nska, M.; Drzymała-Czyz, S.; Przysławski, ˙ J. Diet in the Prevention of Alzheimer’s Disease: Current Knowledge and Future Research Requirements. Nutrients 2022, 14, 4564. https://doi.org/10.3390/ nu14214564
Alzheimer’s Association. 2022 Alzheimer’s Disease Facts and Figures. Alzheimers Dement 2022;18
Gauthier S, Webster C, Servaes S, Morais JA, Rosa-Neto P. 2022. World Alzheimer Report 2022: Life after diagnosis: Navigating treatment, care and support. London, England: Alzheimer’s Disease International
Li, Q.S., Vasanthakumar, A., Davis, J.W. et al. Association of peripheral blood DNA methylation level with Alzheimer’s disease progression. Clin Epigenet 13, 191 (2021). https://doi.org/10.1186/s13148-021-01179-2
Wiatrak, B.; Balon, K.; Jawie ´n, P.; Bednarz, D.; J ˛e´skowiak, I.; Szel ˛ag, A. The Role of the Microbiota-Gut-Brain Axis in the Development of Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 4862. https://doi.org/10.3390/ijms23094862
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019;14:5541-5554
https://doi.org/10.2147/IJN.S200490
Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20(3):148-160. doi:10.1038/s41583-019-0132-6
Kumar A, Sidhu J, Goyal A, et al. Alzheimer Disease. [Updated 2022 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499922/
GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7(2):e105-e125. doi:10.1016/S2468-2667(21)00249-8
Tom SE, Hubbard RA, Crane PK, Haneuse SJ, Bowen J, McCormick WC, et al. Characterization of dementia and Alzheimer's disease in an older population: Updated incidence and life expectancy with and without dementia. Am J Public Health 2015;105(2):408-13.
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease. Lancet. 2021;397(10284):1577-1590. doi:10.1016/S0140-6736(20)32205-4
Rajan KB, Wilson RS, Weuve J, Barnes LL, Evans DA. Cognitive impairment 18 years before clinical diagnosis of Alzheimer disease dementia. Neurology. 2015;85(10):898-904. doi:10.1212/WNL.0000000000001774
Anna Catharina van Loenhoud, Wiesje Maria van der Flier, Alle Meije Wink, Ellen Dicks, Colin Groot, Jos Twisk, Frederik Barkhof, Philip Scheltens, Rik Ossenkoppele, for the Alzheimer's Disease Neuroimaging Initiative Neurology Jul 2019, 93 (4) e334-e346; DOI: 10.1212/WNL.0000000000007821
Millar PR, Balota DA, Maddox GB, et al. Process dissociation analyses of memory changes in healthy aging, preclinical, and very mild Alzheimer disease: Evidence for isolated recollection deficits. Neuropsychology. 2017;31(7):708-723. doi:10.1037/neu0000352
Li W, Sun L and Xiao S (2020) Prevalence, Incidence, Influence Factors, and Cognitive Characteristics of Amnestic Mild Cognitive Impairment Among Older Adult: A 1-Year FollowUp Study in China
Mank, A., Rijnhart, J.J.M., van Maurik, I.S. et al. A longitudinal study on quality of life along the spectrum of Alzheimer’s disease. Alz Res Therapy 14, 132 (2022). https://doi.org/10.1186/s13195-022-01075-8
Fu H, Li J, Du P, Jin W, Gao G, Cui D. Senile plaques in Alzheimer's disease arise from Aβ- and Cathepsin D-enriched mixtures leaking out during intravascular haemolysis and microaneurysm rupture [published online ahead of print, 2022 Nov 30]. FEBS Lett. 2022;10.1002/1873-3468.14549. doi:10.1002/1873-3468.14549
Chambers JK, Uchida K, Harada T, Tsuboi M, Sato M, et al. (2012) Neurofibrillary Tangles and the Deposition of a Beta Amyloid Peptide with a Novel N-Terminal Epitope in the Brains of Wild Tsushima Leopard Cats. PLOS ONE 7(10): e46452. https://doi.org/10.1371/journal.pone.0046452
Gouras GK, Olsson TT, Hansson O. β-Amyloid peptides and amyloid plaques in Alzheimer's disease. Neurotherapeutics. 2015;12(1):3-11. doi:10.1007/s13311-014-0313-y
Kelberman, Michael A. et al. ‘Consequences of Hyperphosphorylated Tau in the Locus Coeruleus on Behavior and Cognition in a Rat Model of Alzheimer’s Disease’. 1 Jan. 2022 : 1037 – 1059.
Goedert, M. (2015). Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled A , tau, and -synuclein. Science, 349(6248), 1255555–1255555. doi:10.1126/science.1255555
Andoh, M, Koyama, R. Microglia regulate synaptic development and plasticity. Develop Neurobiol. 2021; 81: 568– 590. https://doi.org/10.1002/dneu.22814
Ebenau, J.L., Visser, D., Verfaillie, S.C.J. et al. Cerebral blood flow, amyloid burden, and cognition in cognitively normal individuals. Eur J Nucl Med Mol Imaging 50, 410–422 (2023). https://doi.org/10.1007/s00259-022-05958-8
Ottoy, J., Verhaeghe, J., Niemantsverdriet, E., De Roeck, E., Wyffels, L., Ceyssens, S., Van Broeckhoven, C., Engelborghs, S., Stroobants, S. and Staelens, S. (2019), 18F-FDG PET, the early phases and the delivery rate of 18F-AV45 PET as proxies of cerebral blood flow in Alzheimer's disease: Validation against 15O-H2O PET. Alzheimer's & Dementia, 15: 1172-1182. https://doi.org/10.1016/j.jalz.2019.05.010
Sweeney, M. D., Montagne, A., Sagare, A. P., Nation, D. A., Schneider, L. S., Chui, H. C., … Wang, D. J. J. (2019). Vascular dysfunction—The disregarded partner of Alzheimer’s disease. Alzheimer’s & Dementia, 15(1), 158–167. doi:10.1016/j.jalz.2018.07.222
Fengdan Ye, Quentin Funk, Elijah Rockers, Joshua M Shulman, Joseph C Masdeu, Belen Pascual, for the Alzheimer’s Disease Neuroimaging Initiative, In Alzheimer-prone brain regions, metabolism and risk-gene expression are strongly correlated, Brain Communications, Volume 4, Issue 5, 2022, fcac216, https://doi.org/10.1093/braincomms/fcac216
Serrano-Pozo A, Growdon JH. Is Alzheimer's Disease Risk Modifiable?. J Alzheimers Dis. 2019;67(3):795-819. doi:10.3233/JAD18102
A. Armstrong R. Risk factors for Alzheimer’s disease. Folia Neuropathologica. 2019;57(2):87-105. doi:10.5114/fn.2019.85929.
Silva, M.V.F., Loures, C.d.M.G., Alves, L.C.V. et al. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci 26, 33 (2019). https://doi.org/10.1186/s12929-019-0524-y
Zhang, XX., Tian, Y., Wang, ZT. et al. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J Prev Alzheimers Dis 8, 313–321 (2021). https://doi.org/10.14283/jpad.2021.15
Kurita S, Doi T, Tsutsumimoto K, et al. Cognitive activity in a sitting position is protectively associated with cognitive impairment among older adults. Geriatr Gerontol Int. 2019;19(2):98-102. doi:10.1111/ggi.13532
Varma VR, Oommen AM, Varma S, Casanova R, An Y, Andrews RM, et al. (2018) Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Med 15(1): e1002482. https://doi.org/10.1371/journal.pmed.1002482
an Lu, Jie Li, Tingjun Hu, “Analysis of Correlation between Serum Inflammatory Factors and Cognitive Function, Language, and Memory in Alzheimer’s Disease and Its Clinical Significance”, Computational and Mathematical Methods in Medicine, vol. 2022, Article ID 2701748, 7 pages, 2022. http://doi.org/10.1155/2022/270748
Flanagan E, Lamport D, Brennan L, et al. Nutrition and the ageing brain: Moving towards clinical applications. Ageing Res Rev. 2020;62:101079. doi:10.1016/j.arr.2020.101079
Avena NM, Bocarsly ME, Hoebel BG. Animal models of sugar and fat bingeing: relationship to food addiction and increased body weight. Methods Mol Biol. 2012;829:351-365. doi:10.1007/978-1-61779-458-2_23
Westwater ML, Fletcher PC, Ziauddeen H. Sugar addiction: the state of the science. Eur J Nutr. 2016;55(Suppl 2):55-69. doi:10.1007/s00394-016-1229-6
Liu D, Hu H, Hong Y, Xiao Q, Tu J. Sugar Beverage Habitation Relieves Chronic Stress-Induced Anxiety-like Behavior but Elicits Compulsive Eating Phenotype via vLSGAD2 Neurons. Int J Mol Sci. 2022;24(1):661. Published 2022 Dec 30. doi:10.3390/ijms24010661
USDA U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020-2025. 9th Edition. December 2020. Available at DietaryGuidelines.gov
Seo EH, Kim H, Kwon O. Association between Total Sugar Intake and Metabolic Syndrome in Middle-Aged Korean Men and Women. Nutrients. 2019; 11(9):2042. https://doi.org/10.3390/nu11092042
Atmarita, Imanningsih N, Jahari AB, Permaesih ID, Chan P, Amarra MS. Consumption and sources of added sugar in Indonesia: a review. Asia Pac J Clin Nutr. 2018;27(1):47-64. doi:10.6133/apjcn.042017.07
Atmarita, Atmarita & Jahari, Abas & Sudikno, Sudikno & Soekatri, Moesijanti. (2017). ASUPAN GULA, GARAM, DAN LEMAK DI INDONESIA: Analisis Survei Konsumsi Makanan Individu (SKMI) 2014. GIZI INDONESIA. 39. 1. 10.36457/gizindo.v39i1.201.
Stewart KL, Gigic B, Himbert C, et al. Association of Sugar Intake with Inflammation- and Angiogenesis-Related Biomarkers in Newly Diagnosed Colorectal Cancer Patients. Nutr Cancer. 2022;74(5):1636-1643. doi:10.1080/01635581.2021.1957133
Laguna, J. C., Alegret, M., Cofán, M., Sánchez-Tainta, A., Díaz-López, A., Martínez-González, M. A., … Ros, E. (2021). Simple sugar intake and cancer incidence, cancer mortality and all-cause mortality: A cohort study from the PREDIMED trial. Clinical Nutrition, 40(10), 5269–5277. doi:10.1016/j.clnu.2021.07.031
Malik VS, Li Y, Pan A, et al. Long-Term Consumption of Sugar-Sweetened and Artificially Sweetened Beverages and Risk of Mortality in US Adults. Circulation. 2019;139(18):2113-2125. doi:10.1161/CIRCULATIONAHA.118.037401
Jensen T, Abdelmalek MF, Sullivan S, et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018;68(5):1063-1075. doi:10.1016/j.jhep.2018.01.019
Yingying Jiang, Tingling Xu, Wenlan Dong, Cordia Chu, Maigeng Zhou, Study on the death and disease burden caused by high sugar-sweetened beverages intake in China from 1990 to 2019, European Journal of Public Health, Volume 32, Issue 5, October 2022, Pages 773–778, https://doi.org/10.1093/eurpub/ckac067
Tappy L, Morio B, Azzout-Marniche D, Champ M, Gerber M, Houdart S, Mas E, Rizkalla S, Slama G, Mariotti F, Margaritis I. French Recommendations for Sugar Intake in Adults: A Novel Approach Chosen by ANSES. Nutrients. 2018; 10(8):989. https://doi.org/10.3390/nu10080989
Wang SS, Lay S, Yu HN, Shen SR. Dietary Guidelines for Chinese Residents (2016): comments and comparisons. J Zhejiang Univ Sci B. 2016;17(9):649-656. doi:10.1631/jzus.B1600341
Health Ministry of Indonesia. 2014. Permenkes nomor 14/2014 tentang Pedoman Gizi Seimbang. Jakarta
Tamer, F., Ulug, E., Akyol, A., & Nergiz-Unal, R. (2019). The potential efficacy of dietary fatty acids and fructose induced inflammation and oxidative stress on the insulin signaling and fat accumulation in mice. Food and Chemical Toxicology, 110914. doi:10.1016/j.fct.2019.110914
Della Corte KW, Perrar I, Penczynski KJ, Schwingshackl L, Herder C, Buyken AE. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A Systematic Review and Meta-Analysis of Intervention Studies. Nutrients. 2018; 10(5):606. https://doi.org/10.3390/nu10050606
Borodovitsyna O, Flamini M, Chandler D. Noradrenergic Modulation of Cognition in Health and Disease. Neural Plast. 2017;2017:6031478. doi:10.1155/2017/6031478
Park J, Han S, Mook-Jung I. Peripheral inflammatory biomarkers in Alzheimer’s disease: a brief review. BMB Rep. 2020;53:10-19. https://doi.org/10.5483/BMBRep.2020.53.1.309
Varsha Rani, Rinki Verma, Krishan Kumar, Ruchi Chawla,Role of pro-inflammatory cytokines in Alzheimer's disease and neuroprotective effects of pegylated self-assembled nanoscaffolds,Current Research in Pharmacology and Drug Discovery,Volume 4,2023,100149,ISSN 2590-2571,https://doi.org/10.1016/j.crphar.2022.100149
Lu Y, Li J, Hu T. Analysis of Correlation between Serum Inflammatory Factors and Cognitive Function, Language, and Memory in Alzheimer's Disease and Its Clinical Significance. Comput Math Methods Med. 2022;2022:2701748. Published 2022 Apr 14. doi:10.1155/2022/2701748
Torres-Acosta N, O'Keefe JH, O'Keefe EL, Isaacson R, Small G. Therapeutic Potential of TNF-α Inhibition for Alzheimer's Disease Prevention. J Alzheimers Dis. 2020;78(2):619-626. doi:10.3233/JAD-200711
Shi J, Fan J, Su Q and Yang Z (2019) Cytokines and Abnormal Glucose and Lipid Metabolism. Front. Endocrinol. 10:703. doi: 10.3389/fendo.2019.00703
Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. International Journal of Molecular Sciences. 2019; 20(23):6008. https://doi.org/10.3390/ijms20236008
Lyra e Silva, N.M., Gonçalves, R.A., Pascoal, T.A. et al. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Transl Psychiatry 11, 251 (2021). https://doi.org/10.1038/s41398-021-01349-z
Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen. 2019;39:12. Published 2019 Jun 6. doi:10.1186/s41232-019-0101-5
Justiz Vaillant AA, Qurie A. Interleukin. [Updated 2022 Aug 22]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499840/
Batista AF, Rody T, Forny-Germano L, et al. Interleukin-1β mediates alterations in mitochondrial fusion/fission proteins and memory impairment induced by amyloid-β oligomers. J Neuroinflammation. 2021;18(1):54. Published 2021 Feb 21. doi:10.1186/s12974-021-02099-x
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-1217. doi:10.1016/j.cell.2013.05.039
Lobo-Silva, D., Carriche, G.M., Castro, A.G. et al. Balancing the immune response in the brain: IL-10 and its regulation. J Neuroinflammation 13, 297 (2016). https://doi.org/10.1186/s12974-016-0763-8
Culjak Marija , Perkovic N. Matea , Uzun Suzana , Strac S. Dubravka, Erjavec N. Gordana , Leko B. Mirjana , Simic Goran , Tudor Lucija , Konjevod Marcela, Kozumplik Oliver, Mimica Ninoslav and Pivac Nela *, The Association between TNF-alpha, IL-1 alpha and IL-10 with Alzheimer's Disease, Current Alzheimer Research 2020; 17(11) . https://dx.doi.org/10.2174/1567205017666201130092427
Babić Leko M, Nikolac Perković M, Klepac N, et al. IL-1β, IL-6, IL-10, and TNFα Single Nucleotide Polymorphisms in Human Influence the Susceptibility to Alzheimer's Disease Pathology. J Alzheimers Dis. 2020;75(3):1029-1047. doi:10.3233/JAD-200056
Freeman CR, Zehra A, Ramirez V, Wiers CE, Volkow ND, Wang GJ. Impact of sugar on the body, brain, and behavior. Front Biosci (Landmark Ed). 2018;23(12):2255-2266. Published 2018 Jun 1. doi:10.2741/4704
Malik, V.S., Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat Rev Endocrinol 18, 205–218 (2022). https://doi.org/10.1038/s41574-021-00627-6
Kalra, Sanjay; Gupta, Yashdeep (2018): The Insulin:Glucagon Ratio and the Choice of Glucose-Lowering Drugs. Adis Journals. Online resource. https://doi.org/10.6084/m9.figshare.6217325.v1
Debras C, Chazelas E, Sellem L, et al. Artificial sweeteners and risk of cardiovascular diseases: results from the prospective NutriNet-Santé cohort. BMJ. 2022;378:e071204. Published 2022 Sep 7. doi:10.1136/bmj-2022-071204
Serý O, Povová J, Míšek I, Pešák L, Janout V. Molecular mechanisms of neuropathological changes in Alzheimer's disease: a review. Folia Neuropathol. 2013;51(1):1-9. doi:10.5114/fn.2013.34190
Kumar, V.; Kim, S.-H.; Bishayee, K. Dysfunctional Glucose Metabolism in Alzheimer’s Disease Onset and Potential Pharmacological Interventions. Int. J. Mol. Sci. 2022, 23, 9540. https://doi.org/10.3390/ ijms23179540
Kellar D, Craft S. Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020;19(9):758-766. doi:10.1016/S1474-4422(20)30231-3
Szablewski L. Brain Glucose Transporters: Role in Pathogenesis and Potential Targets for the Treatment of Alzheimer’s Disease. International Journal of Molecular Sciences. 2021; 22(15):8142. https://doi.org/10.3390/ijms22158142
Pagani, M., Nobili, F., Morbelli, S. et al. Early identification of MCI converting to AD: a FDG PET study. Eur J Nucl Med Mol Imaging 44, 2042–2052 (2017). https://doi.org/10.1007/s00259-017-3761-x
Johnson, E. C. B., Dammer, E. B., Duong, D. M., Ping, L., Zhou, M., Yin, L., … Seyfried, N. T. (2020). Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine, 26(5), 769–780. doi:10.1038/s41591-020-0815-6
An Y, Varma VR, Varma S, et al. Evidence for brain glucose dysregulation in Alzheimer's disease. Alzheimers Dement. 2018;14(3):318-329. doi:10.1016/j.jalz.2017.09.011
Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol. 2019;15(6):346-366. doi:10.1038/s41581-019-0129-4
Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The Diabetes Mellitus–Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. International Journal of Molecular Sciences. 2020; 21(5):1835. https://doi.org/10.3390/ijms21051835
Wang Q, Duan L, Li X, Wang Y, Guo W, Guan F, Ma S. Glucose Metabolism, Neural Cell Senescence and Alzheimer’s Disease. International Journal of Molecular Sciences. 2022; 23(8):4351. https://doi.org/10.3390/ijms23084351
Bukke VN, Villani R, Archana M, Wawrzyniak A, Balawender K, Orkisz S, Ferraro L, Serviddio G, Cassano T. The Glucose Metabolic Pathway as A Potential Target for Therapeutics: Crucial Role of Glycosylation in Alzheimer’s Disease . International Journal of Molecular Sciences. 2020; 21(20):7739. https://doi.org/10.3390/ijms21207739
Qi Wang, Xiaomin Huang, Yixun Su, Guowei Yin, Shouyu Wang, Bin Yu, Hui Li, Junhua Qi, Hui Chen, Wen Zeng, Kai Zhang, Alexei Verkhratsky, Jianqin Niu, Chenju Yi, Activation of Wnt/β-catenin pathway mitigates blood–brain barrier dysfunction in Alzheimer’s disease, Brain, Volume 145, Issue 12, December 2022, Pages 4474–4488, https://doi.org/10.1093/brain/awac236
Kang, S.-C., Kim, B.-R., Lee, S.-Y., & Park, T.-S. (2013). Sphingolipid Metabolism and Obesity-Induced Inflammation. Frontiers in Endocrinology, 4. doi:10.3389/fendo.2013.00067
Alzamil H. Elevated Serum TNF-α Is Related to Obesity in Type 2 Diabetes Mellitus and Is Associated with Glycemic Control and Insulin Resistance. J Obes. 2020;2020:5076858. Published 2020 Jan 30. doi:10.1155/2020/5076858
Petersen C, Bell R, Klag KA, et al. T cell-mediated regulation of the microbiota protects against obesity. Science. 2019;365(6451):eaat9351. doi:10.1126/science.aat9351
Kawano Y, Edwards M, Huang Y, et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell. 2022;185(19):3501-3519.e20. doi:10.1016/j.cell.2022.08.005
Honda, K., & Littman, D. R. (2016). The microbiota in adaptive immune homeostasis and disease. Nature, 535(7610), 75–84. doi:10.1038/nature18848
Satokari R. High Intake of Sugar and the Balance between Pro- and Anti-Inflammatory Gut Bacteria. Nutrients. 2020;12(5):1348. Published 2020 May 8. doi:10.3390/nu12051348
Alasmar, R. M., Varadharajan, K., Shanmugakonar, M., Al-Naemi, H. A., Early-Life Sugar Consumption Affects the Microbiome in Juvenile Mice. Mol. Nutr. Food Res. 2022, 2200322. https://doi.org/10.1002/mnfr.202200322
Lippert, K., Kedenko, L., Antonielli, L., Kedenko, I., Gemeier, C., Leitner, M., … Hackl, E. (2017). Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Beneficial Microbes, 8(4), 545–556. doi:10.3920/bm2016.0184
Bull MJ, Plummer NT. Part 2: Treatments for Chronic Gastrointestinal Disease and Gut Dysbiosis. Integr Med (Encinitas). 2015;14(1):25-33.
Dai, C.-L.; Liu, F.; Iqbal, K.; Gong, C.-X. Gut Microbiota and Immunotherapy for Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 15230. https://doi.org/10.3390/ ijms232315230
Silva YP, Bernardi A and Frozza RL (2020) The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 11:25. doi: 10.3389/fendo.2020.00025
Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer's disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother. 2018;18(1):83-90. doi:10.1080/14737175.2018.1400909
Zhong, Si-Ran, Kuang, Qi, Zhang, Fan, Chen, Ben and Zhong, Zhen-Guo. "Functional roles of the microbiota-gut-brain axis in Alzheimer’s disease: Implications of gut microbiota-targeted therapy" Translational Neuroscience, vol. 12, no. 1, 2021, pp. 581-600. https://doi.org/10.1515/tnsci-2020-0206
Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965-977. doi:10.1038/nn.4030
Minter MR, Zhang C, Leone V, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Sci Rep. 2016;6:30028. Published 2016 Jul 21. doi:10.1038/srep30028
Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain Research, 1693, 128–133. doi:10.1016/j.brainres.2018.03.015
Bhattacharjee, S., & Lukiw, W. J. (2013). Alzheimer’s disease and the microbiome. Frontiers in Cellular Neuroscience, 7. doi:10.3389/fncel.2013.00153
Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol. 2019;39(1):31-59. doi:10.1007/s10571-018-0632-3
Kummer MP, Hammerschmidt T, Martinez A, et al. Ear2 deletion causes early memory and learning deficits in APP/PS1 mice [published correction appears in J Neurosci. 2015 Feb 4;35(5):2321. Urban, Inga [Added]]. J Neurosci. 2014;34(26):8845-8854. doi:10.1523/JNEUROSCI.4027-13.2014
Iba M, McBride JD, Guo JL, Zhang B, Trojanowski JQ, Lee VM. Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC's afferent and efferent connections. Acta Neuropathol. 2015;130(3):349-362. doi:10.1007/s00401-015-1458-4
Kowalski K, Mulak A. Brain-Gut-Microbiota Axis in Alzheimer’s Disease. J Neurogastroenterol Motil 2019;25:48-60. https://doi.org/10.5056/jnm18087
Emery DC, Shoemark DK, Batstone TE, et al. 16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer's Post-Mortem Brain. Front Aging Neurosci. 2017;9:195. Published 2017 Jun 20. doi:10.3389/fnagi.2017.00195
Cattaneo, A., Cattane, N., Galluzzi, S., Provasi, S., Lopizzo, N., Festari, C., … Frisoni, G. B. (2017). Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging, 49, 60–68. doi:10.1016/j.neurobiolaging.201
Harach T, Marungruang N, Duthilleul N, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota [published correction appears in Sci Rep. 2017 Jul 10;7:46856]. Sci Rep. 2017;7:41802. Published 2017 Feb 8. doi:10.1038/srep41802
Somayeh Athari Nik Azm, Abolghassem Djazayeri, Majid Safa, Kian Azami, Behzad Ahmadvand, Fatemeh Sabbaghziarani, Mohammad Sharifzadeh, and Mohammadreza Vafa. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1–42) injected rats. Applied Physiology, Nutrition, and Metabolism. 43(7): 718-726. https://doi.org/10.1139/apnm-2017-0648
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Clinical and Research Journal in Internal Medicine
This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the journal as the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.